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1. Introduction.

Suppose that F has an IFR (increasing failure rate) distribution

with mean ji, second moment p 29 stationary renewal distribution

-1 t 2G(t) - % F(x)dx, and p = 1-(o /212). Consider a renewal process

with interarrival time distribution F, and define M(t) to be the

expected number of renewals in [O,t], including a renewal at time zero.

Marshall and Proschan (1972) showed that for F NBUE (new better

than used in expectation, a weaker property than IFR):

(1.1) M(t) < + 1

In section 2 it is shown that for F IFR:

t + 22i:-
(1.3) MWt > +

-i 2

a-:

Thus for F IFR, (1.1) and (1.2) combine to give the two sided bound:

t a 2(1.3) - t - 1

For F non-lattice with finite second moment M(t-1 -(P2 2P 2 )

-1 2
converges to 0 as t - (Feller (1971) p. 366), and thus to +(P2/2i2)

serves as an asymptotic linear approximation to M(t). Defining

-1 2L(t) - M(t)-t-j l(I2/2p ), the error of approximation at t, it follows

from (1.3) that for F IFR:

2
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(1.4) -p < L(t) < p

(1.5) suplL(t)l = P = L(O)
t

Thus p equals the exact sup norm error for the asymptotic linear

approximation.

The parameter p was suggested by Keilson (1975) as a measure of

departure of a distribution from an exponential distribution with the

same mean. Inequality (1.5) demonstrates that in the IFR case p measures

a characteristic of the departure of the renewal process with distribution

F from that of a Poisson process with the same mean interarrival time.

Results are also obtained for the approximate exponentiality of

IFR distributions with small p. For probability distributions FI , F2

on [0,-) define D(F1 ,F2 ) = supIFl(t)-F 2 (t)I, and

D (FI,F2 ) supJFI(B)-F 2 (B)I, the sup taken overall Borel subsets of

[0,-). Define aE to be an exponential distribution with mean a. In

section 3 the following inequalities are derived:

(1.6) D(F,PE) < 2p'

(1.7) D (F,G) < 2p

(1.8) D (G,uE) < P

(1.9) D(G,w GE) < •

3 -.
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Thus for F IFR with small p, F and G are approximately

equal and approximately exponential.

Brown and Ge (1984) showed that for F IFRA (increasing failure

rate on the average) the best bound for D(F,pE) of the form cp has

1 4/i= - and 1< c < - . Thus (1.5) cannot be extended from IFR to
2-T

IFRA. However, (1.5) does extend to the class of absolutely continuous

distributions which are simultaneously IFRA and DMRL (decreasing mean

residual life). I don't know whether or not (1.5) holds for the class

of DMRL distributions.

Finally it is shown that for F IFR:

et11-l1+2p i
(1.10) F(t) < e for t > 0.

This result combines with an inequality of Barlow and Proschan ((1975)

p. 113) to yield:

(i i - t P- I  e t v - 1+ 2p

e < F(t) < e- for 0 < t < p

The methodology of this paper overlaps with that of Brown (1980) and

(1983). However, I have found the IFR class to be more difficult to

penetrate than DFR for the properties of interest. In some cases no close

analogue of the DFR result holds, in others the IFR analogue is weaker.

Increasing failure rate distributions on [0,oo) are absolutely

continuous except perhaps for an atom at the right hand endpoint of the

support. The atom leads to uninteresting technicalities and in this paper

4



we ignore them by assuming the IFR distributions to be absolutely continuous.

All the above results are for atomless IFR distributions. However, I

believe that they hold in the general case. The method of proof would

be to replace the atom at the right hand endpoint, b, by a uniform dis-

tribution on [b-e,b] with the samte mass as the atom, and let c - 0. The

resulting distributions are absolutely continuous IFR distributions which

converge to the original. Then continuity arguments are needed to show

that the corresponding functionals converge. This line of argument is

not pursued here.

Increasing failure rate distribuitons have been widely studied. Some

notable references are Barlow, Marshall and Proschan (1963), Barlow and

Marshall (1964a,b), Barlow and Proschan (1964), and Barlow (1965). A lucid

discussion of the subject can be found in Barlow and Proschan (1975).

Bounds on the renewal function have been investigated in the general case

by Lorden (1970), Stone (1972) and Daley (1976), (1978) and for reliability

classes by Brown (1980) and Marshall and Proschan (1972).

2. Renewal Function Inequalities.

A distribution on [0,-) is defined to be IFR (Barlow and Proschan

(1975) p. 54) if the residual life is stochastically decreasing in t

i.e. F(t+s)/F(t) is decreasing in t for each s > 0. IFR distribu-

tions can have support [0,c-) in which case they are absolutely continuous,

or support [a,b] with 0 < a < b < in which case they are absolutely

H. continuous except perhaps for an atom at b (Barlow and Proschan (1975)

p. 77). As mentioned in the introduction, we will assume without further

5

. . .. .; , Z . .-. \ - ,- - r 
-

. . . r; - . - . . .. .....- > :,- -..-. -. .- , -. - . -. *..*



. - '- r .

mention that the IFR distributions have no atom, and thus are absolutely

continuous. The IFR property is equivalent to H(t) = -lnF(t) convex,

and to h(t) - H'(t) = f(t)/F(t) increasing, where h is the failure

rate function (Barlow and Proschan (1975) p. 54).

We will refer at times to classes defined by weaker aging properties

than IFR. The class IFRA (increasing failure rate on the average) is

characterized by H starshaped, i.e. H(t)/t increasing, a weaker

property than H convex; DMRL (decreasing mean residual life) distri-

butions have E(X-tlX> t) decreasing, a weaker property than X-tIX> t

stochastically decreasing; NBU (new better than used) distributions have

X-tIX> t stochastically smaller than X for all t > 0, and NBUE (new better

than used in expectation) distributions satisfy E(X-tIX > t) EX for all t > 0.

All the above classes are discussed in Barlow and Proschan (1975).

Lemma 2.1 below rephrases and simplifies Lemma 3.3 of Brown (1980):

Lemma 2.1. Assume that F and F are probability distributions on
1 2

the real line with F1(t)/F 2 (t) increasing in t. Then there exists

(Xl,X) with XX Fit X 1% F X a.s. and:
12 l F 2  F2  1-2

(2.2) D*(F,F 2) =suPIF(B)-F 2(B)I < Pr(X1 >X ) < 1 - 2 dFl(t)
B f- F (t)

Proof. Define F (t) F(t)/Fl(t) and note that F -  = 1, Fz is

decreasing and right continuous and 0 < FZ(t) < 1 for all t; I- is

thus the survival function of a possibly improper random variable. Con-

struct X1  and Z independent with X1 '. F1 , Z F and define

6
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X 2 imin(X1 ,Z), noting that Pr (X2 >t) F F2(t), thus X2 F2 For

any Borel set B:

IF 1(B)-F 2(B) I =IPr(X 1eB,X 1OX 2)-Pr(X 2cB,X 1OX 2)1

< max(Pr(X cB,X OX ) ,Pr(X cB,X OX2)

< Pr(X > X) Pr(Z< <X) = 2  dF1 )

Theorem 2.3. Suppose that F is IFR and that G is the stationary

renewal distribution corresponding to F. Then there exists (X1,X)

with X I F, X 2 -,G, X 1 > X 2  a.s. and:

(2.4) D (F,G) < Pr(X >X) < 1 -S- = 2p

where pi E 2= Var FX, P = ' 2P 2 " E F X

Proof. F IFR implies E(X-tIX> t) =Gt) decreasing. Thus Lemma 2.1
F(t)

is applicable with F 1 F and F 2 =G. This gives:

(2.5) D (F,G) < 1 - J (t)h(t)dt
where h is the failure rate function of F.

Integration by parts in (2.5) produces:

(2.6) D (F,G) < 1 whr I - F(t)H(t)dt

7



* and H(t) -lnF(t) ft h(x)dx.

Noting that xH differentiates to xh+H, we have:

(2.7) EXH(X) = E (xh+H)dx (xh+H)Tdx =11+I. I
fo

Next, noting that EH(X) = 1, define probability measures P and

Q by: j

P(A) = HdF; Q(A) = f dF

The ratio of the Radon-Nikodym derivitives of P and Q with respect

to F is UH(x)/x which is increasing since F is IFR and H convex

and thus starshaped. Therefore P is bigger than Q under the partial

ordering of monotone likelihood ratio (Lehmann (1959) p. 74) and thus has

a bigger mean. Thus

(2.8) EXH(X) = EpX > E = j.

From (2.7) and (2.8) we conclude:

(2.9) I > /V

The result now follows from ,'2.6) and (2.9). f
We now construct (N(t),N (t),t > 01 where {N(t),t > 01, is dis-

tributed as an ordinary renewal process with interarrival time distribution

F(IFR) and {N (t),t > 0} distributed as the stationary renewal process -

8,......... _.. ..
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-p corresponding to N. The construction is similar to Brown (1980) p. 230.

The process N starts with a renewal at time 0. Its next renewal occurs

at X F while the first renewal for the process N occurs at Y Cx .

By Theorem 2.3 we can construct (X1,Y I) with X 1 > Y" l' i = 1

then we construct all future renewal epochs identical for the two processes.

if X > Y.then at time Y process N has its next interarrival time,

T -Y ^-F while process N has a forward recurrence time at Y distri-
2 1 1

buted as X 1-Y 1x1 > Y1 . Since F is IFR, for any t:

(2.10) F(x) is increasing in x
F(t+x)/F(t)

It follows from (2.10) and Theorem 2.3 that we can construct

(T 2-Y1,X -Y I) and thus (T 29,X1) with X 1 <T 2  a-s. if X I =T2

we make :ill future renewal epochs identical for N and N ,otherwise

we cont Lie the construction. We wind up with processes N and N ,N

having rer...als at 0,X1,S,S,.. N at Y1,T2 T.. with renewal

39• .-. 2' .

epochs alternating between N and N until a random event epoch where

both processes have a common renewal (called the coupling time) at which

time they share all future event epochs. Thus a typical realization may

look like:

0 <Y =T < X = < S 1
1 1 1 1 <T 2 S 2 <T 3  3 4'

in which case S -T for k > 3.k k+l

Note that under the above construction N(t)-N (t) starts at 1"

alternates between 1 and 0, and either identically equals 0 or 1

.....-

................... rcesN asit ex itearialtie

T 2 - Y I F whie pro------------------------------------Y1-d-stri



from the coupling time to o. In the atomless case it is easy to show

that with probability one N and N eventually do have a common renewal

epoch. With the above construction we can now derive the renewal results.

Define M(t) to be the expected number of renewals, including a

renewal at zero, for a renewal process with IFR interarrival time distri-

bution F.

Theorem 2.11. For F IFR, the following inequalities hold:

2

(2.12) -. + < M(t) < t + 1
j 2-

-1 2
(2.13) -p < L(t) = M(t)-ti- -(p 2 /21

2 ) < ID

(2.14) suplL(t)l = p = L(O)

Proof. By our observation that under the above construction N(t)-N (t) -

can only equal 0 or 1:

M(t) - = Pr(N(t)-N*(t)=l)

If X = Y then N(t)-N (t) 1, for all t. From Theorem (2.3),

2 2
Pr(X1 =YI) under the construction is at least /. Thus

2
(2.15) M(t) -> Pr(X Y >

Thus (2.12) follows from (2.15) and the Marshall-Proschan inequality

for NBUE distributions mentioned in the Introduction. Inequality (2.13)

10
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follows from (2.12) by subtracting 2
2) from all 3 sides of

V
the inequality. Finally (2.14) follows from (2.13) and the observation

that L(O) p. LI
Analogues of the results of Brown (1980) for renewal theory for DFR

interarrival times do not hold in the IFR case. An example of Berman

(1978) p. 429 shows that F IFR does not imply an increasing renewal
-,"

density function, nor M(t)-p t decreasing, nor the expected forward
I

recurrence time decreasing. The identity (2.14) holds for F IFR (increas-

ing mean residual life) with F(0) = 0, as follows from Brown (1980),

Theorem 2.

3. Exponential Approximations.

Theorem (2.3) bounds the distance between F, an IFR distribution,

and G its stationary renewal distribution. This bound is the key to L

obtaining approximate exponentiality for F under small p.

Theorem 3.1. Suppose that F is IFR with mean p, second moment 12'.
1- 2 /21 a-1 F(x)dx. Then:

0 =  ~, and G(t) = ii O ,.

(3.2) D (F,G) < 2p

(3.3) D (G,PE) < P

(3.4) D(F,pE) < 2p

(3.5) D(G,lGE) < .

Gt

.. . . . .. .~ .. . . . . .
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Proof. Bound (3.2) is the conclusion of Theorem 2.3. Inequality (3.3)

follows from Brown (1983) remark 4.14, as F is IFR and therefore NBUE.

Since G is stochastically smaller than both F and .E, it follows

that D(F,IiE) < max(D(F,G),D(G,ijE)) < 2p by (3.2) and (3.3), thus - -'

(3.4) is true. Finally pE is stochastically larger than both C and

1 GE, and D(E,jG E) < p by Lemma 2.1, thus D(C, GE)<max(D(C,IE),D(IGE,IjE))

Inequality (3.2) is sharp in that 2p is the best possible upper bound

for D (FG) of the form cp . This can be seen by letting F be a one

1*point distribution at 1 in which case p = 2 and D (F,G) = 1. F can be

approximated by a uniform distribution on [I-el], which is IFR and

absolutely continuous; as e - 0, p + and D (F,G) - 1. In this example,

D(F,uE) = 1-e - 1, thus the maximum potential improvement of inequality (3.4)

is from 2P to 2(l-e )p P 1.26p. In Brown and Ge (1984) I reported that

2p was the best possible bound of the form cp but the example I based,

that on contained a numerical error. The sharpness of (3.4) is still an

open question.

Finally we prove the following inequality for F IFR:

(3.5) F(t) < e -t - + p " ''

This combines with a bound of Barlow and Proschan (1975). p. 113 to

give the following two-sided bound:

(3.6) e- < F(t) < +2p for 0 < t < P

12



The proof of (3.5) now follows. Consider N a renewal process with

interarrival time F, and R a non-homogeneous Poisson process with

intensity function h (the failure rate of F). For F NBU (new

better than used) N(O,t] is trivially stochastically smaller than

R(0,t] for all t. Thus:

(3.7) M(t)-l - EN(O,t] < ER(O,t] H(t)

As a consequence of (3.7) and (2.12):

- --+ 2j

(3.8) F(t) = e-H(t) < e- (M(t)- l) < e

4. Comments and Additions.

(4.1) A key ingredient of this paper is inequality (2.9). Following the

same approach tle following correlation inequality can be derived. Let

K(x) be starshaped and X a non-negative random variable. Then:

a/i
(4.2) p(X,K(X)) > a K(X) IK(X)

Thus the correlation between X and K(X) is bounded below by the

ratio of coefficients of variation.

(4.3) Theorems 2.3 and 3.1 hold for absolutely continuous distributions

which are simultaneously IFRA and DMRL, a slightly more general class than

IFR. The DMRL condition appears essential, but perhaps the results hold

without assuming that H is starshaped (and thus F is IFRA). What

13
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.

would be needed to extend the results to the class DMRL is a proof of

(2.8) assuming only that F is DMRL.

(4.4) Define Z(t) to be the forward recurrence time at t for a

renewal process with IFR interarrival time distribution. An immediate

consequence of (2.12), using Wald's identity is:

2
(4.5) R-- < EZ(t) < p.

I14

14=
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